If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+39x-11=0
a = 4; b = 39; c = -11;
Δ = b2-4ac
Δ = 392-4·4·(-11)
Δ = 1697
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-\sqrt{1697}}{2*4}=\frac{-39-\sqrt{1697}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+\sqrt{1697}}{2*4}=\frac{-39+\sqrt{1697}}{8} $
| 7x-14=3x+42 | | -9.4x=7.52 | | 3b-4=25 | | 3/x=12/19 | | -5j+-7j-14j+13j=13 | | 7x+8=43=+2x | | 3n-2n-n+2n+2=20 | | 3(x-7)=3(x+4) | | 8y-3y+y+y+3y-7=13 | | 0.4x+2=x-4 | | 3z=1.3+3.2 | | 13r-8r-4r=17 | | 2*(5+3)=x-1 | | -14n+16n=6 | | 4/x-8=15/38 | | 7x+8=43=2x | | 5z=1.6+4.4 | | 3x-2+55+85=180 | | t=32 | | .75t=5 | | 7m+m=8 | | 18x-20=12+9x | | 0.33x+2=x-4 | | -11-x-5x=1 | | 7b+-18b+14b=-9 | | 3(3^2y-6)=27 | | -83z-71=z-91 | | 0.67+2.4v=8.69 | | 0.1x+12.6=x-9.45 | | 16z+7z+13z+10=10 | | 29x-40=59+19x | | 2(1+5)=5(2x-1) |